Tutorial class 28/3

1 Series of real numbers

Definition 1.1. We say that $\sum_{i=1}^{\infty} x_i$ converge if $\sum_{i=1}^{n} x_i$ is a convergent sequence.

Proposition 1.1. (Necessary condition) $\sum_{i=1}^{\infty} x_i$ is convergent only if $x_n \to 0$ as $n \to \infty$.

Proof. Denote $s_n = \sum_{i=1}^n x_i$, $L = \sum_{i=1}^\infty x_i$. Then $x_n = s_n - s_{n-1} \rightarrow L - L = 0$.

Proposition 1.2. (Cauchy Criterion) $\sum_{i=1}^{\infty} x_i$ is convergent if and only if $\forall \epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all m, n > N, $\sum_{i=n}^{m} x_i < \epsilon$.

Proof. Directly from the result of convergent sequence.

2 tests for convergence

Hence we have the following comparsion test.

Corollary 2.1. If $\{a_k\}$, $\{b_l\}$ are two sequence of real number in which $0 \le a_k \le b_k$ for all $k \in]mathbbN$. Then $\sum a_k$ converge if $\sum b_k$ converge.

Example 2.2. The following series are convergent.

- 1. $\sum_{n=1}^{\infty} n e^{-n^2}$
- 2. $\sum_{n=1}^{\infty} \frac{n}{n^{2+\epsilon}-n+1}$, where $\epsilon > 0$.

Proof. Since $xe^{-x/2} \to 0$ as $x \to 0$, we know that $xe^{-x/2}$ is bounded by some L > 0 on $[0, +\infty)$. Thus

$$ne^{-n^2} \le e^{-n^2/2} \cdot \frac{Ln}{n^2} \le Le^{-n/2} \quad \forall n \in \mathbb{N}.$$

Right hand side is clearly summable. Hence by comparison test, the series is convergent. Noted that

$$\frac{n}{n^{2+\epsilon}-n+1} \le \frac{n}{n^{2+\epsilon}-n} \le \frac{n}{n^{2+\epsilon}-\frac{1}{2}n^{2+\epsilon}} = \frac{2}{n^{1+\epsilon}}.$$

The second inequality hold when $n \ge N(\epsilon)$. (say $N > \log_2(2 + \epsilon)$) By comparison test, $\sum_{n=N}^{\infty} \frac{n}{n^{2+\epsilon} - n + 1}$ is convergent and hence the whole series converges.

Theorem 2.3. (Montone convergence theorem) Suppose $x_n \ge 0$, then $\sum_{n=1}^{\infty} x_n$ converge if and only if the partial sum is bounded uniformly.

Example 2.4. Suppose $x_n \ge 0$ and $\sum x_n$ converge. Then the following series converge.

1. $\sum x_n^{1+\epsilon}$, where $\epsilon > 0$.

Proof. We have $x_n \to 0$ as $n \to \infty$. So there exists N such that for all n > N, $0 \le x_n \le 1$. Thus

$$0 \le x_n^{1+\epsilon} \le x_n \quad \forall \ n > N.$$

Thus, by comparison test or MCT, the result follows.

2.
$$\sum \frac{\sqrt{x_n}}{n}$$

Proof. By cauchy inequality,

$$\sum_{n=1}^{N} \frac{\sqrt{x_n}}{n} \le \left(\sum_{n=1}^{N} x_n\right)^{1/2} \left(\sum_{n=1}^{N} \frac{1}{n^2}\right)^{1/2} \le L.$$

The upper bound is due to the convergence of $\sum x_n$ and $\sum 1/n^2$. Thus the series is convergent.

3. Suppose $\sum a_k$ and $\sum b_k$ are two series of positive numbers such that $\lim_{k\to\infty} \frac{a_k}{b_k} = l > 0$, then $\sum a_k$ is summable if and only if $\sum b_k$ is so.

Proof. There exists N such that for all $n \ge N$,

$$\frac{l}{2} \cdot b_n \le a_n \le 2l \cdot b_n.$$

The conclusion follows from comparison test.

Theorem 2.5. (Root Test)Suppose a_n is sequence of real number such that

$$\limsup_{n \to \infty} |a_n|^{1/n} = L.$$

Then the series converges absolutely if L < 1, and diverge if L > 1.

Proof. If $0 \leq L < 1$, because of the assumption, there exists $N \in \mathbb{N}$ so that

$$\sup_{k \ge n} |a_k|^{1/k} \le l = \frac{1+L}{2}, \ \forall n \ge N,$$

Thus, for all $n \ge N$, $|a_n| \le l^n$. But the series $b_n = l^n$ is clearly convergent. So $\sum_{n=N}^{\infty} |a_n|$ converges and hence $\sum_{n=1}^{\infty} |a_n|$.

If L > 1, for $l = \frac{1+L}{2}$, there exists $N \in \mathbb{N}$ such that $\sup_{k \ge n} |a_k|^{1/k} > l > 1$ for all n > N. So for each n > N, there exists a subsequence a_{n_j} so that $|a_{n_j}| \ge l^{n_j} \to +\infty$. So the series cannot be convergent.

Example 2.6. $\sum \left(\frac{n}{2n+1}\right)^n$ is convergent.

Proof.
$$|x_n|^{1/n} = \frac{n}{2n+1} \to \frac{1}{2} \in [0,1).$$

The existence of improper integral is similar to the convergence of series. The relationship is illustrated below.

Theorem 2.7. Let f be positive decreasing function on $[1, +\infty)$. Then the series $\sum_{k=1}^{\infty} f(k)$ converges if and only if the improper integral $\int_{1}^{\infty} f(t) dt$ exists.

Proof. Basically due to the fact that for all $k \ge 2$,

$$f(k) \le \int_{k-1}^{k} f(t) dt \le f(k-1).$$

Therefore, for all $n \ge m \ge 1$,

$$\sum_{k=m+1}^{n} f(k) \le \int_{m}^{n} f(t) \, dt \le \sum_{k=m}^{n-1} f(k).$$

If the integral exists, take m = 1 to see that partial sum is bounded and hence convergent by monotone convergent theorem.

If the series is convergent, $\forall \epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all m, n > N,

$$0 < \sum_{k=m}^n f(k) < \epsilon.$$

Thus, for all x > y > N + 1,

$$\int_{y}^{x} f(t) dt \leq \int_{[y]}^{[x]+1} f(t) dt \leq \sum_{k=[y]}^{[x]+1} f(k) < \epsilon.$$

So the integral exists by cauchy criterion.

Example 2.8.

1. $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if p > 1.

Proof. If $p \leq 0$, the series is clearly divergent by the convergent criterion. By integral test, suffices to consider the function $f(t) = \frac{1}{t^p}$ where p > 0. Now let us compute the integral.

$$\int_{1}^{x} \frac{1}{t^{p}} dt = \frac{x^{1-p} - 1}{1-p}.$$

So the integral exists if and only if p > 1.

2. The series $\sum_{k=2}^{\infty} \frac{1}{k(\log k)^{\alpha}}$ converge when $\alpha > 1$.

Proof. The improper integral $\int_1^{\infty} f(t) dt$ where $f(t) = \frac{1}{t \log t^p}$ exists if p > 1.

3. $\sum_{n=2}^{\infty} \frac{1}{n \log n \log \log n} \text{ diverge.}$