
Tutorial class 28/3

1 Series of real numbers

Definition 1.1. We say that
∑∞
i=1 xi converge if

∑n
i=1 xi is a convergent sequence.

Proposition 1.1. (Necessary condition)
∑∞
i=1 xi is convergent only if xn → 0 as n→∞.

Proof. Denote sn =
∑n
i=1 xi, L =

∑∞
i=1 xi. Then xn = sn − sn−1 → L− L = 0.

Proposition 1.2. (Cauchy Criterion)
∑∞
i=1 xi is convergent if and only if ∀ ε > 0, there

exists N ∈ N such that for all m,n > N ,
∑m
i=n xi < ε.

Proof. Directly from the result of convergent sequence.

2 tests for convergence

Hence we have the following comparsion test.

Corollary 2.1. If {ak}, {bl} are two sequence of real number in which 0 ≤ ak ≤ bk for all

k ∈]mathbbN . Then
∑
ak converge if

∑
bk converge.

Example 2.2. The following series are convergent.

1.
∑∞
n=1 ne

−n2

2.
∑∞
n=1

n
n2+ε−n+1 , where ε > 0.

Proof. Since xe−x/2 → 0 as x → 0, we know that xe−x/2 is bounded by some L > 0 on

[0,+∞). Thus

ne−n
2

≤ e−n
2/2 · Ln

n2
≤ Le−n/2 ∀ n ∈ N.

Right hand side is clearly summable. Hence by comparsion test, the series is convergent.

Noted that
n

n2+ε − n+ 1
≤ n

n2+ε − n
≤ n

n2+ε − 1
2n

2+ε
=

2

n1+ε
.

The second inequality hold when n ≥ N(ε). (say N > log2(2 + ε)) By comparsion test,∑∞
n=N

n
n2+ε−n+1 is convergent and hence the whole series converges.

Theorem 2.3. (Montone convergence theorem) Suppose xn ≥ 0, then
∑∞
n=1 xn converge if

and only if the partial sum is bounded uniformly.

Example 2.4. Suppose xn ≥ 0 and
∑
xn converge. Then the following series converge.

1.
∑
x1+εn , where ε > 0.
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Proof. We have xn → 0 as n → ∞. So there exists N such that for all n > N ,

0 ≤ xn ≤ 1. Thus

0 ≤ x1+εn ≤ xn ∀ n > N.

Thus, by comparsion test or MCT, the result follows.

2.
∑ √

xn
n

Proof. By cauchy inequality,

N∑
n=1

√
xn
n
≤

(
N∑
n=1

xn

)1/2( N∑
n=1

1

n2

)1/2

≤ L.

The upper bound is due to the convergence of
∑
xn and

∑
1/n2. Thus the series is

convergent.

3. Suppose
∑
ak and

∑
bk are two series of positive numbers such that limk→∞

ak
bk

= l >

0, then
∑
ak is summable if and only if

∑
bk is so.

Proof. There exists N such that for all n ≥ N ,

l

2
· bn ≤ an ≤ 2l · bn.

The conclusion follows from comparison test.

Theorem 2.5. (Root Test)Suppose an is sequence of real number such that

lim sup
n→∞

|an|1/n = L.

Then the series converges absolutely if L < 1, and diverge if L > 1.

Proof. If 0 ≤ L < 1, because of the assumption, there exists N ∈ N so that

sup
k≥n
|ak|1/k ≤ l =

1 + L

2
, ∀n ≥ N,

Thus, for all n ≥ N , |an| ≤ ln. But the series bn = ln is clearly convergent. So
∑∞
n=N |an|

converges and hence
∑∞
n=1 |an|.

If L > 1, for l = 1+L
2 , there exists N ∈ N such that supk≥n |ak|1/k > l > 1 for all n > N .

So for each n > N , there exists a subsequence anj so that |anj | ≥ lnj → +∞. So the series

cannot be convergent.

Example 2.6.
∑

( n
2n+1 )n is convergent.

Proof. |xn|1/n = n
2n+1 →

1
2 ∈ [0, 1).

The existence of improper integral is similar to the convergence of series. The relationship

is illustrated below.
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Theorem 2.7. Let f be positive decreasing function on [1,+∞). Then the series
∑∞
k=1 f(k)

converges if and only if the improper integral
∫∞
1
f(t) dt exists.

Proof. Basically due to the fact that for all k ≥ 2,

f(k) ≤
∫ k

k−1
f(t) dt ≤ f(k − 1).

Therefore, for all n ≥ m ≥ 1,

n∑
k=m+1

f(k) ≤
∫ n

m

f(t) dt ≤
n−1∑
k=m

f(k).

If the integral exists, take m = 1 to see that partial sum is bounded and hence convergent

by monotone convergent theorem.

If the series is convergent, ∀ε > 0, there exists N ∈ N such that for all m,n > N ,

0 <

n∑
k=m

f(k) < ε.

Thus, for all x > y > N + 1,

∫ x

y

f(t) dt ≤
∫ [x]+1

[y]

f(t) dt ≤
[x]+1∑
k=[y]

f(k) < ε.

So the integral exists by cauchy criterion.

Example 2.8.

1.
∑∞
n=1

1
np converges if and only if p > 1.

Proof. If p ≤ 0, the series is clearly divergent by the convergent criterion. By integral

test, suffices to consider the function f(t) = 1
tp where p > 0. Now let us compute the

integral. ∫ x

1

1

tp
dt =

x1−p − 1

1− p
.

So the integral exists if and only if p > 1.

2. The series

∞∑
k=2

1

k(log k)α
converge when α > 1.

Proof. The improper integral
∫∞
1
f(t) dt where f(t) = 1

t log tp exists if p > 1.

3.

∞∑
n=2

1

n log n log log n
diverge.
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